
XIAO ET AL. VOL. 9 ’ NO. 5 ’ 5454–5460 ’ 2015

www.acsnano.org

5454

May 04, 2015

C 2015 American Chemical Society

Bio-Inspired Structural Colors
Produced via Self-Assembly of
Synthetic Melanin Nanoparticles
Ming Xiao,†,^ Yiwen Li,‡,^ Michael C. Allen,§ Dimitri D. Deheyn,§ Xiujun Yue,‡ Jiuzhou Zhao,†

Nathan C. Gianneschi,*,‡ Matthew D. Shawkey,*, ) and Ali Dhinojwala*,†

†Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States, ‡Department of Chemistry & Biochemistry, University of California,
San Diego, La Jolla, California 92093, United States, §Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego,
La Jolla, California 92093, United States, and )Department of Biology and Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325,
United States. ^These authors (M.X. and Y.L.) contributed equally to this work

S
tructural colors, remarkable for their
color tunability and resistance to che-
mical and photo bleaching, have broad

applicability in colorimetric sensors,1�3 full
color displays,4 and photonic pigments.5

Avian feathers likely possess the highest
diversity of structural colors found in na-
ture, with spectral features arising from ar-
rays of melanosomes (submicrometer sized
melanin-containing organelles in spherical,
rod-like, or disk-like shapes with solid or
hollow morphologies6,7), such as in the
multilayer structures present in the feathers
of birds of paradise (Parotia lawesii) and
in common bronzewings (Phaps chalco-

ptera).8,9 Other structural color morpholo-
gies, including two-dimensional photonic
crystal structures, are found in species such
as peacocks (Pavo muticus) and mallards
(Anas platyrhynchos).10,11 The vast array of
colors and the ubiquitous use of this ap-
proach to coloration and patterning make
mimicry of such assemblies highly desirable
for synthetic materials. This presents a chal-
lenge in nanoscale synthesis of well-defined

particles, their self-assembly to generate
films, and ultimately in understanding of
the underlying principles governing the
observed effects.
Melanins, produced in melanosomes, are

ubiquitous pigments found in bacteria,
fungi, plants, extant animals,12 and in pre-
historic organisms including dinosaurs.13�16

They are classified as black/brown eumela-
nins andyellow/reddishpheomelaninsbased
on their precursors.17 Eumelanins are more
intensively studied and have intriguing
physicochemical properties, including a
monotonic broadband UV�vis absorption,
an intrinsic radical center, and electrical
and photoconductive properties.18 Mela-
nins in animal integuments (feathers, hair
or skin) are thought to absorb UV radiation
to protect living organisms.17 However, no
organism other than birds uses melano-
somes to form organized structures for
producing colors.19 Although the physical
principles behind structural colors have in-
spirednumerous efforts to generate photonic
crystals,20,21 few have tried to take advantage
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ABSTRACT Structural colors arising from interactions of light with submicron

scale periodic structures have been found in many species across all taxa, serving

multiple biological functions including sexual signaling, camouflage, and aposema-

tism. Directly inspired by the extensive use of self-assembled melanosomes to

produce colors in avian feathers, we set out to synthesize and assemble poly-

dopamine-based synthetic melanin nanoparticles in an effort to fabricate colored

films. We have quantitatively demonstrated that synthetic melanin nanoparticles

have a high refractive index and broad absorption spanning across the UV�visible range, similar to natural melanins. Utilizing a thin-film interference

model, we demonstrated the coloration mechanism of deposited films and showed that the unique optical properties of synthetic melanin nanoparticles

provide advantages for structural colors over other polymeric nanoparticles (i.e., polystyrene colloidal particles).
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of melanins or melanin-like material to mimic structur-
al colors.22,23

Polydopamine (PDA), the most common type of
synthetic melanin, has been used extensively in fields
as diverse as biology, energy science, sensor develop-
ment and environmental science,24 since its first use as
a multifunctional coating was inspired by the foot
protein in mussels.25 Although the exact polymeriza-
tion mechanism for PDA has not yet been clearly
elucidated, recent advances have revealed that the
physicochemical properties of PDA-based synthetic
melanins are generally similar to those of natural mela-
nins,18,24 giving them promise as photoprotectors,26

antioxidants,27 semiconductors,28 and biomedical
materials.29

Recently, Kohri et al.22 used different sizes of PDA
particles to spray coat films of different colors. In this
case, colors were mostly generated due to scattering
phenomena. Wu et al.23 fabricated colored reflectors
by placing a thin PDA film on top of a thick layer of
amorphous PDA particles that served as a strong
absorbing layer. However, despite their prevalence in
the natural world, and obvious advantages in devel-
oping the diversity of colors produced by birds in parti-
cular, direct bio-inspired coloration fromordered struc-
tures of PDA particles has not yet been reported.
In addition, what advantages PDA particles may offer
relative to common polymeric particles in terms of
structural coloration has not yet been elucidated. Here,
inspired by structural coloration arising from as-
sembled melanosomes in avian feathers, we have pre-
pared and assembled synthetic melanin nanoparticles

(SMNPs, Figure 1) to construct structurally colored films
using an evaporative process. We have measured the
complex refractive index (RI) of SMNPs and have
established a thin-film interference model that ex-
plains the origin of observed colors. The SMNPs and
their self-assembly into films provide an approach for
mimicking the vibrant colors found in avian feathers
with a wide range of potential applications in the
design of optical devices, functional coatings, and
biocompatible products.

RESULTS AND DISCUSSIONS

Inspired by the dimension of natural melanosomes
in structurally colored feathers (e.g., the diameter of
rod-like shaped melanosomes is 120�170 nm for
ducks11 and 140�180 nm for peacocks10), we have
fabricated SMNPs with an average diameter of 146 (
15 nm as measured via transmission electron micro-
scopy (TEM) (Figure 1a). Dynamic light scattering (DLS)
measurements are consistent with TEM data, revealing
that SMNPs in solution have a narrow distribution
with an average diameter of 184 nm. Measurements
of effective RI of solutions of aqueous SMNPs (neff

2)
as a function of volume fractions of SMNPs showed
a near perfect linear relationship (Figure 1b),
which matches the Drude model,30 neff

2 = Vmnm
2 þ

(1 � Vm)nw
2. The real part of the RI of SMNPs was

calculated to be 1.741 ( 0.001 at 589 nm (eq S1,
Supporting Information). These calculations reveal
the value of RI for synthetic melanin is appreciably
higher than most synthetic polymers (∼1.4�1.6 at
589 nm).31 The imaginary component of RI was

Figure 1. Characterizations of SMNPs. (a) Size distribution of SMNPs, where y axis is the contribution of scattered light
intensity from different sizes of particles to total light intensity. Inset: TEM image of SMNPs with a scale bar of 100 nm.
(b) Square of effective RI of solutions of SMNPs as a function of volume fraction. The slope of the linear fitting is nm

2 � nw
2.

The coefficient of determination for the linear fitting is 0.998. (c) Transmittance spectra for SMNPs solutions at different
concentrations (blue, 10mg L�1; red, 25mg L�1; black, 50mg L�1). (d) Imaginary part of the RI as a function of thewavelength.
Different colored curves are for each concentration (blue, 10mg L�1; red, 25mg L�1; black, 50mg L�1) and green curve is the
averaged value of all three concentrations.
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calculated (eqs S4 and S5, Supporting Information)
using the transmittance (or absorption) data for the
solutions of SMNPs. (Figure 1c). As expected from
theory, we obtained similar values for the imaginary
part of the RI of SMNPs for all the three concentrations
(10, 25, and 50mg L�1), with a small discrepancy for the
values below 400 nm, probably due to the measure-
ment errors at short wavelength from low transmit-
tance. Previous reports describe experimental and
modeling data suggesting a range of 1.65�2.0 for RI
of natural melanins, although much debate remains
concerning the exact value.10,11,32 Certainly, our mea-
surements show that both real and imaginary parts of
RI for SMNPs are similar to those reported for natural
melanins32 with the broad absorption of light by
SMNPs in the UV�visible region being comparable to
that of natural melanin.17

We prepared colored films of SMNPs using a vertical
evaporation-based self-assembly approach.33 Subse-
quently, a wide range of colors (red, orange, yellow,
and green) was obtained by evaporating 0.6 and
1.0 mg mL�1 solutions of SMNPs at an evaporation
rate of 0.50�0.55 mm h�1 (Figure 2a). The concentra-
tion of the solution was important for controlling the
uniformity of the films with separate strips of colors
running perpendicular to the evaporation front formed
at low concentration, and gray or black films formed at
high concentrations (Supporting Information Figure S1).
An inherent feature of this approach to the assembly of
ordered films is that the concentration changes during
evaporation, making it difficult to obtain one uniform
color across the entire 1 � 1 cm2 area of the sample.
However, the uniformity over 1 mm was sufficient for
both optical characterization and cross-sectional scan-
ning electron microscopy (SEM) analyses.
The reflectance spectra for red and green films show

two peaks in the visible region with primary peak

positions at 675 and 550 nm corresponding to the
red and green color, respectively (Figure 2b,c). As a
control, the reflectance spectra for blank silicon wafers
show no discernible peak and very high reflectance at
short wavelengths, demonstrating that the colors ob-
served for films of SMNPs are not caused by the silicon
substrate (Supporting Information Figure S2). Further-
more, hyperspectral images (Figure 3) show that the
green color has a purity of 84%, with red color purity as
high as 95% for a scanning area of 0.05� 0.1 mm2. The
reflectance spectrameasured using hyperspectral ima-
ging are very similar to those obtained using the
microspectrophotometer, complementarily confirm-
ing the uniformity of the films in terms of colors.
SEM cross-sectional images of regions of the films

associated with green and red colors revealed thick-
nesses measured to be approximately 338 ( 9 and
444 ( 15 nm, respectively (Figure 4). Top view
SEM images of the films showed close-packed SMNPs
lacking long-range crystalline order; an observation
confirmed by analysis of the two-dimensional Fourier
power spectra (Figure 4c,d). In each case, the films have
small and evenly distributed cracks, due to shrinkage
during the drying process. These cracks do not affect
the color measurements because the measured spot
size (10 � 10 μm2 for microspectrophotometer mea-
surements, 0.05 � 0.1 mm2 for hyperspectral imaging)
is on a longer length-scale than crack widths. We
further modeled the reflectivity data using a four-layer
thin-film interference model (air plus film of SMNPs
plus silicon oxide plus silicon. For details, see Experi-
mental Section). We used an interactivemethod on the
packing density of SMNPs in the film to obtain the best
match with measured reflectance spectra, with the
best fitting packing density of 54% for red film and
56% for green film (Figure 2b,c). The obtained optimal
packing density is reasonable, and lower than the

Figure 2. Optical characterizations of SMNP films. (a) Optical images of colored films. The red and orange colors are from
different regions of the film in Supporting Information Figure S1b, and the yellow and green colors are from different locations
of the film in Supporting Information Figure S1c. Scale bars: 100 μm. (b) Measured (red curve) and modeled (black curve)
reflectance spectra of redfilm in (a). (c)Measured (green curve) andmodeled (black curve) reflectance spectraofgreenfilm in (a).
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theoreticallymaximum randomclosed packing density
of 63.4%.34 Small discrepancies at shorter wave-
lengths may be due to the dispersion of the real part
of the RI of SMNPs in the visible range. The optical
model of red and green colors (longest and shortest
wavelengths we achieved) shows that the variation of
colors is primarily due to differences in the thickness of
the SMNPs layers. The color generatedhere is not directly
related to theparticle size. Theparticle size influences the
packing density, indirectly affecting the refractive index
and the color producedby thin-film interference, but this
effect is beyond the scope of this study.
Although self-assembly of colloidal nanoparticles to

generate color has been well documented,35,36 most
established systems use polymeric particles such
as polystyrene (PS) and poly(methyl methacrylate)
(PMMA), which usually display negligible absorption
of light in the visible range. However, the broad
absorption spectrum of SMNPs is important for gen-
erating more saturated colors. In recent studies it has
been shown that adding carbon black nanoparticles
reduces incoherent scattering and enhances color sat-
uration.37,38 We simulated the reflectance spectra
(Figure 5) for films consisting of PS nanoparticles with
similar packing density and thickness as the red and
green films, as showed in Figure 2a. We used the fol-
lowing dispersion equation for real part of the RI of PS.39

n ¼ 1:573þ 3108

λ2
þ 3:478� 108

λ4
(1)

In eq1, λ is thewavelength (nm). The imaginary part of
the RI of PS is∼0, due to negligible absorption between
400 and 800 nm.39 Both spectra for SMNPs and PS
particles have two peaks in the visible range. Interest-
ingly, the two peaks for PS films have similar intensities
(peak area ratio = 0.64�0.70), while the peak at shorter
wavelength is much attenuated, reaching only 11% of
the area of the peak at longerwavelength for the red film
of SMNPs and 22% for the green film of SMNPs.
SMNPs have unique absorption patterns (high ab-

sorption at short wavelengths and low absorption at
long wavelengths) that enhance color purity and
provide UV-protection. Additionally, RI of SMNPs is
much higher than that of most polymers, providing a
relatively high RI contrast necessary for the design of
highly sensitive colorimetric sensor.40 Relative to some
reportedmetal oxide nanoparticles with even higher RI
used to create structural colors,41 bio-inspired SMNPs
potentially are less toxic, more biodegradable, and
are inherently biocompatible.42 Moreover, these bio-
mimetic structural colors can be directly obtained via

assembly of SMNPs in aqueous solution, potentially

Figure 4. SEM images of structure of SMNP films. (a and b)
SEM cross-sectional images of the red film and green film,
respectively; (c and d) top view SEM images of the red and
green films, respectively. The insets in panels (c) and (d)
correspond to 2D Fourier power spectra. Scale bars: 500 nm.

Figure 3. Hyperspectral analysis of (a) red and (b) green SMNP films. In each case, two distinct spectra (shown with different
color codes) contributed to the color measured in specular reflectance. Each spectrum corresponded to a different pixel
percent of the scanned area, and the low-occurrence spectrum always appeared randomly scattered across the scanned area
(see insets).

Figure 5. Modeled reflectance spectra for films of PS nano-
particle and SMNPs. The colors of the curves are colored
with RGB standards using “rgb2spec” in Pavo package of
R.47 (a) The thickness of nanoparticle layer is 338 nm; peak
area ratio between the shorter wavelength peak (420 nm)
and the longer wavelength peak (620 nm) is 0.70 for PS;,
while peak area ratio between the shorter wavelength peak
(440 nm) and the longer wavelength peak (680 nm) is 0.11
for SMNPs. (b) The thickness of nanoparticle layer is 444 nm;
peak area ratio between the shorter wavelength peak
(390 nm) and the longer wavelength peak (510 nm) is 0.64
for PS, while peak area ratio between the shorter wave-
length peak(405 nm) and the longer wavelength peak
(550 nm) is 0.22 for SMNPs.
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offering a route toward a biocompatible structural
color palette.

CONCLUSIONS

We have demonstrated a biomimetic approach for
generating structural colors via evaporation-induced
self-assembly of well-defined SMNPs. We have shown
that SMNPs possess a high RI and broad absorption
spanning the UV�visible range, similar to natural
melanin, providing the necessary contrast for struc-
tural colors. Colors ranging from green to red were
produced by evaporation-based self-assembly of
these nanoparticles. Controlling the thickness of the
assembled nanoparticles produced different colors,

which were successfully predicted using a thin-film
interferencemodel. In addition, SMNPs can bemanuf-
actured in large quantities and are biocompatible.
Our results show the unique advantage of using
melanosomes to generate colors found in the animal
kingdom and also offer numerous new opportunities
toward multifunctional photonic devices and bio-
compatible products. In the future, increased control
of the self-assembly process will be investigated as a
necessity in obtaining large-scale films capable of
producing the full color spectrum. Ongoing studies
will explore alternative assembly procedures and
utilize analogous SMNPs with various morphologies
and compositions.

EXPERIMENTAL SECTION
Synthesis and Characterization of SMNPs. The SMNPs were syn-

thesized through the oxidation and self-polymerization of
dopamine molecules in a solution consisting of water, ethanol
and ammonia at room temperature, which is modified from the
previous literature.42 Although many parameters could affect
the final size of the SMNPs, we optimized the required size by
tuning the molar ratio of ammonia and dopamine hydrochlor-
ide. Typically, to synthesize SMNPs with average diameter of
∼146 nm, 50 mL of deionized water and 20 mL of ethanol were
fullymixedwith 1.2mL of ammonia aqueous solution (28�30%)
under stirring at room temperature for about 1 h. A 5 mL
dopamine hydrochloride aqueous solution (4 mg/mL) was
quickly injected into this solution. It was observed that the
solution color turned to pale yellow immediately and then
gradually changed to black after 1 h. After 18 h, the targeted
SMNPs were separated by centrifugation and washing with
deionizedwater thrice. All chemicals are purchased from Sigma-
Aldrich. We characterized the size of SMNPs in solution by DLS
measurements using a BI�HV Brookhaven instrument with a
633 nm solid-state laser (Brookhaven Instruments Corp.). DLS
data were analyzed using CONTIN software to determine the
hydrodynamic diameter. The size of the nanoparticles was also
confirmed using a JEM-1230 transmission electron microscope
(TEM) (JEOL Ltd.) after drying.

Evaporation-Based Assembly. Silicon wafers (Silicon, Inc.) were
cut into 1� 1 cm2 and ultrasonicated in 2 wt % sodium dodecyl
sulfate (Sigma) solution for 30 min, followed by washing with
deionized water for 30 min, and a final rinse using acetone for
30min. After a drying step, the silicon substrates were subjected
to a 5 min air plasma treatment (Harrick Plasma, PDC-32G). One
milliliter of SMNPs in water of a known concentration was
ultrasonicated for 15 min and placed into a plastic cuvette
(Brandtech). A clean silicon wafer was held vertically in the
solution at 60 �C until all the water evaporated. A separate
cuvette filled with water was used to monitor the evaporation
rate (expressed as change in height (mm) per unit hour).We also
measured the thickness of the top thin silica layer of bare silicon
wafer using a multiple wavelength mode ellipsometer (J.A.
Woollam Corp.) before evaporative deposition of SMNPs.

Characterization of the SMNP Film. Optical images of deposited
films were taken using an Olympus BX51microscope (Olympus
Corp.). CRAIC AX10 UV�visible-NIR microspectrophotometer
(MSP) (CRAIC Technologies, Inc., a 15� objective, range 400�
800 nm) was used to measure the normal reflectance spectra
of deposited films of SMNPs at various locations that showed
uniform colors. We normalized the reflectance with respect to
a white standard of high density Teflon tape (TaegaTech).

To characterize the purity of the color and the spectral
homogeneity of the film at a fine spatial scale, we performed
measurements using a PARISS hyperspectral imaging system
(LightForm, Inc.) mounted on a Nikon 80i microscope outfitted

with a monochrome Retiga 2000DC CCD camera (QImaging).
The system was radiometrically calibrated with accuracy better
than 2 nm. The film was analyzed under specular reflectance
(with a tungsten halogen white light, neutrally color balanced
using a Nikon NCB11 filter) using a 100� air objective, capturing
spectra (400�800 nm) from all digital pixels of an area of 0.05�
0.1 mm2. The reflectance spectra were then normalized with
respect to a standard silver mirror (ThorLabs, Inc.) and
smoothed with a moving average of 3 as recommended by
the vendor. For relative comparison of spectral intensity, all
acquisition parameters were kept the same from one mapped
area to the other. All spectra from one individual area showing
>99% closeness of fit were identified by one single representa-
tive spectrum. For data presentation (Figure 3), we show the
mapping of the different spectra using artificial color coding.
We display the normalized spectra corresponding to the color
coded map and show the ratio of the number of pixels of the
mapped area that is associated with each spectrum.

For electron microscopy, the top-view and cross-sectional
structures were obtained using SEM (JEOL-7401, JEOL Ltd.) after
silver sputter coating using a K575X turbo sputter coater
(Emitech). To measure the thickness of the deposited film, we
cut the SMNPs deposited wafer into half and vertically aligned
the cut edge for SEM imaging. We used ImageJ (http://imagej.
nih.gov/ij/) to measure the thickness of the melanin film from
the SEM images.

Optical Modeling. Amatrix method43,44 was used to calculate
reflectivity data for a four-layer thin film model, which consists
of a layer of air, a randomly packed film of SMNPs, a silicon
oxide layer, and a thick silicon substrate. The thickness of
SMNPs film was measured by analyzing cross-sectional SEM
images (Figure 4a,b). The silicon oxide layer was 119 ( 3 nm
thick measured using ellipsometry before depositing the
melanin films, which was consistent with the value of 121 (
6 nm measured using the SEM cross-sectional images. The
RI values of silicon oxide and silicon are 1.458 and 3.973,
respectively.45,46
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